Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury.
نویسندگان
چکیده
Neural stem/progenitor cell (NSPC) migration toward sites of damaged central nervous system (CNS) tissue may represent an adaptive response for the purpose of limiting and/or repairing damage. Little is known of the mechanisms responsible for this migratory response. We constructed a cDNA library of injured mouse forebrain using subtractive suppression hybridization (SSH) to identify genes that were selectively upregulated in the injured hemisphere. We demonstrate that stem cell factor (SCF) mRNA and protein are highly induced in neurons within the zone of injured brain. Additionally, the SCF receptor c-kit is expressed on NSPCs in vitro and in vivo. Finally, we demonstrate that recombinant SCF induces potent NSPC migration in vitro and in vivo through the activation of c-kit on NSPCs. These data suggest that the SCF/c-kit pathway is involved in the migration of NSPCs to sites of brain injury and that SCF may prove useful for inducing progenitor cell recruitment to specific areas of the CNS for cell-based therapeutic strategies.
منابع مشابه
O15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury
Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...
متن کاملP 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury
Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...
متن کاملMicroglia as a stem cell
Microglia is considered the only cell population of mesodermal origin, which comprises 10% of the cells in brain parenchyma. Recent neural stem cell (NSC) studies demonstrate that the brain has regenerative potential. NSCs do not give rise to microglial cells, however indicating that NSCs alone cannot complete the regenetion of the brain. Although the role of microglia is not fully understood, ...
متن کاملMicroglia as a stem cell
Microglia is considered the only cell population of mesodermal origin, which comprises 10% of the cells in brain parenchyma. Recent neural stem cell (NSC) studies demonstrate that the brain has regenerative potential. NSCs do not give rise to microglial cells, however indicating that NSCs alone cannot complete the regenetion of the brain. Although the role of microglia is not fully understood, ...
متن کاملProtective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot qua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 113 9 شماره
صفحات -
تاریخ انتشار 2004